A Compact Finite Difference Method on Staggered Grid for Navier-Stokes Flows

نویسندگان

  • K. K. Q. Zhang
  • F. Mashayek
چکیده

Compact finite difference methods feature high-order accuracy with smaller stencils and easier application of boundary conditions, and have been employed as an alternative to spectral methods in direct numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is to cancel lower-order errors by treating spatial Taylor expansions implicitly. Recently, some attention has been paid to conservative compact finite volume methods on staggered grid, but there is a concern about the order of accuracy after replacing cell surface integrals by average values calculated at centers of cell surfaces. Here we introduce a high-order compact finite difference method on staggered grid, without taking integration by parts. The method is implemented and assessed for an incompressible shear-driven cavity flow at Re = 10, a temporally periodic flow at Re = 10, and a spatially periodic flow at Re = 10. The results demonstrate the success of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids

In this paper we consider the linearized Navier-Stokes equations in two dimensions under specified boundary conditions. We study both the continuous case and a discretization using a second order finite difference method on a staggered grid and derive estimates for both the analytic solution and the approximation on staggered grids. We present numerical experiments to verify our results.

متن کامل

High-order accurate solution of the incompressible Navier-Stokes equations on massively parallel computers

High order methods are of great interest in the study of turbulent flows in complex geometries by means of direct simulation. With this goal in mind, the incompressible Navier-Stokes equations are discretized in space by a compact fourth order finite difference method on a staggered grid. The equations are integrated in time by a second order semi-implicit method. Stable boundary conditions are...

متن کامل

A staggered grid, high-order accurate method for the incompressible Navier-Stokes equations

A high-order accurate, finite-difference method for the numerical solution of the incompressible Navier–Stokes equations is presented. Fourth-order accurate discretizations of the convective and viscous fluxes are obtained on staggered meshes using explicit or compact finite-difference formulas. High-order accuracy in time is obtained by marching the solution with Runge–Kutta methods. The incom...

متن کامل

A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes

We propose a novel arbitrary high order accurate semi-implicit space-time discontinuous Galerkin method for the solution of the three-dimensional incompressible Navier-Stokes equations on staggered unstructured curved tetrahedral meshes. The scheme is based on the general ideas proposed in [1] for the two dimensional incompressible Navier-Stokes equations and is then extended to three space dim...

متن کامل

A Fast Poisson Solver for the Finite Difference Solution of the Incompressible Navier-Stokes Equations

In this paper, a fast direct solver for the Poisson equation on the half-staggered grid is presented. The Poisson equation results from the projection method of the finite difference solution of the incompressible Navier–Stokes equations. To achieve our goal, new algorithms for diagonalizing a semidefinite pair are developed. The fast solver can also be extended to the three-dimensional case. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005